Searches for New Particles

Beate Heinemann

Introduction

- The LHC
 - will uncover the mechanism for electroweak symmetry breaking
 - Higgs boson searches, WW scattering
 - might explain the dark matter in the universe
 - Supersymmetry (SUSY) searches
 - might explain why the electroweak scale is so much smaller than the Planck scale
 - Extra Dimensions and SUSY searches
 - might reveal something unexpected
 - generic searches
- LBNL group is involved in aspects of all of these
 - Most results based on 1-5 fb⁻¹ of 2011 data

Diboson Production

- Diboson production intimately linked with electroweak symmetry breaking
 - cross section measurements fundamental test of SM
 - probe trilinear gauge boson couplings (TGC's)
 - searches for resonant production

Hsu, Loscutoff, Shapiro

event selection

WZ Production

Phys. Lett. B709 (2012) 341-357

- -3 high p_T leptons (e or μ)
 - •I*I- pair consistent with mz
- -E_Tmiss>25 GeV

main backgrounds

-W/Z+jets, ZZ, top

process	events
background	12.1
WZ	50.3
Total SM	62.4
Data	71

$$\sigma_{WZ}^{\text{tot}} = 20.5_{-2.8}^{+3.1} (\text{stat.})_{-1.3}^{+1.4} (\text{syst.})_{-0.8}^{+0.9} (\text{lumi.}) \text{ pb.}$$

ZZ Production

Phys. Rev. Lett. 108 (2012) 041804

Event selection

- -4 high p_T leptons (e or μ)
- -2 I⁺I⁻ pairs consistent with m_Z

Main backgrounds

-Fake

process	events
background	0.3+0.5
ZZ	8.9±0.3
Total SM	9.2 ^{+0.6} -0.4
Data	12

$$\sigma_{ZZ}^{\rm tot}~=~8.5^{+2.7}_{-2.3}~({\rm stat.})~^{+0.4}_{-0.3}~({\rm syst.})~\pm0.3~({\rm lumi.})~{\rm pb}.$$

Trilinear Gauge Couplings

- WZ analysis on full 2011 dataset also nearly final
 - Much improved constraints due to usage of differential distribution

$\textbf{WZ Resonance Search}^{\textit{Hsu, Loscutoff, Shapiro}}$

• W' or ρ_T decaying to WZ

• m_⊤(WZ)

arXiv: 1204.1648 (acc. by PRD)

M(W')>760 GeV at 95% CL

ZZ Resonance Search

Phys. Lett. B712 (2012) 331-350

combine 4-lepton search with IIjj search

-Dilepton and dijet masses required to be consistent with

m(Z)

 no resonance observed => constraints on Randall-Sundrum graviton decaying to ZZ

Inner Detector Alignment

- mass resolution significantly improved due to alignment carried out in summer 2011
 - -fixed "weak mode" misalignments in endcaps
 - -Data resolution now consistent with simulation

see poster

Higgs Production at the LHC

Cross section uncertainties typically 15%

1000 M_H [GeV]

Cross Section x Branching Ratio

•High mass region:

- –WW and ZZ most important
- •Low mass region:
 - -ZZ->4 leptons
 - $-\gamma\gamma$
 - $-\tau\tau$
 - -WW->lvlv
 - -bb (only WH and ZH)

Higgs boson mass (GeV/c²)

LBNL involvement up to now: WW, ττ

(very recently also ZZ)

Higgs -> ττ Search

Clarke, Biesiada, Pranko, Varouchas

3 analysis channels

$$-\tau_l\tau_l, \tau_l\tau_h, \tau_h\tau_h$$

mass reconstruction

- -Use "MMC" methodby Pranko et al.
- -Improvement compared to traditional "collinear approximation"

main backgrounds

- $-Z->\tau\tau$
- -W+jet
 - •jet misidentified as т

Elagin, Murat, Pranko, Safonov Nucl. Inst. Methods A654 (2011) 481-489.

Ditau Mass Distribution

Clarke, Biesiada, Pranko, Varouchas

ATLAS-CONF-2012-014

- data agree with background expectation
- sensitive to 5 times the SM Higgs rate in thtl mode
 - -Other modes have similar sensitivity

Higgs->ττ Cross Section Limits

- Not yet sensitive to SM Higgs rate
 - -Many improvements on the way for 2012 data analysis
- Observation critical to establish "if it is the Higgs"
 - -Probes directly the coupling to fermions

Luminosity

Heinemann, Pagan Griso, Shapiro, Tibbets, Tompkins, Yu

Luminosity measurement critical for all ATLAS analyses

- -Cross section measurements
- -Searches for new physics

work in progress

Uncertainty Source	$\delta \mathcal{L}/\mathcal{L}$	
	2010	2011
Bunch Charge Product	3.1%	0.54%
Other <i>vdM</i>		
Calibration Uncertainties	1.3%	1.43%
Afterglow Correction		0.20%
BCM Stability		0.25%
Long-Term Consistency	0.5%	0.70%
μ Dependence	0.5%	0.50%
Total	3.4%	1.78%

- preliminary uncertainty
 for 2011: 1.8%
 - -Smallest uncertainty ever achieved at hadron collider!

Black Hole Search

- Extra dimension models present solution to hierarchy problem
 - fundamental Planckscale M_D a few TeV
 - microscopic black holes could be produced
- Black holes evaporate via Hawking radiation
 - -High multiplicity
- •Select events with 2 likesign muons + 8 tracks with p_T>10 GeV

Phys. Lett. B 709 (2012) 322-340

see poster

Vertexing & Beamspot

Beringer, Hurwitz, Yu Loscutoff, Pagan Griso

- beamspot determination integrated in Tier0 processing since 2010
 - -Likelihood extracts positions, widths and correlations
 - -Provides important constraint for primary vertexing
- Vertex resolution, efficiency and fake rate understanding important at high pileup
 - -Data are well modeled by simulation

More Search Analyses in progress...

Arguin, Heinemann, Hurwitz, Skinnari

- Anomalous production of like-sign dileptons
 - -Extension of μμ analysis including ee and eμ (2011 data)
- Search for gluinos decaying via top quarks
 - signature: like-sign leptons and b-jets (2011 data)
- Multi-lepton search

Copic, Dube, Hance, Heinemann, Hinchliffe

- focus of LBNL group is tau-leptons (2011+2012)
- H->WW search

Galtieri, Pagan Griso, Quayle

- -Lowering the subleading lepton p_T (important for 125 Higgs): 2011+ 2012 data
- WW scattering

Heinemann, Pagan Griso, Sood

- -In like-sign WW channel: 2011+2012 data
- Most of analyses mentioned before are being refined and updated with 2012 data

Conclusions and Outlook

- Broad range of searches carried out by LBNL
 - -see also talks by A. Bach and L. Skinnari
 - -No sign of new physics in 2011 data
 - -Higgs boson search has entered a very exciting phase
- 2012 data analysis has started
 - -Already recorded >6 fb⁻¹ of 8 TeV data
- Many important technical contributions benefit many physics analyses
 - -alignment, luminosity, vertexing and beamspot measurements
 - •achieved 1.8% precision on luminosity measurement!
- Hope to make at least one discovery in 2012 data